Abstract

Successful gene transfection on a tissue scaffold is of crucial importance in facilitating tissue repair and regeneration by enabling the localized production of therapeutic drugs. Polycaprolactone (PCL) has been widely adopted as a scaffold biomaterial, but its unfavorable cell-adhesion property needs to be improved. In this work, the PCL film surface was conjugated with poly((2-dimethyl amino)ethyl methacrylate) (P(DMAEMA))/gelatin complexes via surface-initiated atom transfer radical polymerization (ATRP) for improving cell immobilization and subsequent gene transfection. A simple aminolysis-based method was first used for the covalent immobilization of ATRP initiators on the PCL film. Well-defined P(DMAEMA) brushes were subsequently prepared via surface-initiated ATRP from the initiator-functionalized PCL surfaces. The P(DMAEMA) chains with a pK(a) of 7.0-7.3 were used for conjugating gelatin with a pI of 4.7 via electrostatic interaction. The amount of complexed gelatin increased as that of the grafted P(DMAEMA) layer. The cell-adhesion property on the functionalized PCL surface could be controlled by adjusting the ratio of P(DMAEMA)/gelatin. It was found that the gene transfection property on the immobilized cells was dependent on the density of the immobilized cells on the functionalized PCL film. With the good cell-adhesive nature of gelatin and the efficient gene transfection on the dense immobilized cells, the incorporating the suitable of P(DMAEMA)/gelatin complexes onto PCL surfaces could endow the PCL substrates new and interesting properties for potential tissue engineering applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.