Abstract

Thermoresponsive poly(N-isopropylacrylamide) (P(NIPAAm))-grafted polycaprolactone (PCL) films with a suitable amount of immobilized cell-adhesive collagen were prepared to improve cell adhesion and proliferation above the lower critical solution temperature (LCST, 32°C) of P(NIPAAm) without destroying cell detachment properties at lower temperatures. Covalently tethered P(NIPAAm) brushes on PCL film surfaces were first prepared via surface-initiated atom transfer radical polymerization (ATRP). The alkyl bromide end groups of the grafted P(NIPAAm) brushes were used in nucleophilic substitution reactions for the direct coupling of collagen to produce the collagen-immobilized thermoresponsive PCL surface. At 37°C, the cell attachments on the collagen-immobilized thermoresponsive PCL surface were enhanced substantially. The attached cells could be recovered simply by lowering culture temperature. The P(NIPAAm)-grafted PCL films with immobilized collagen are potentially useful as adhesion modifiers for advanced cell culture and tissue engineering applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call