Abstract

Melanoidins formed from different carbohydrates, such as d-glucose, d-fructose, and d-xylose, and their typical degradation products, such as hydroxymethylfurfural, furfural, glyoxal, and methylglyoxal, with l-alanine were analyzed with Fourier transform infrared spectroscopy (FTIR). Characteristic infrared bands were identified representing spectral differences between the investigated melanoidin species due to their different molecular compositions. With the help of principal components analysis (PCA) the IR data allowed for a fast discrimination between the different model melanoidins. From this study it is inferred that the intensity and relative absorption wavelength of CO single versus CO double bonds are characteristic features of the investigated melanoidins. Melanoidins formed from carbohydrates exhibit less carbonyl functions in comparison to melanoidins from the degradation products, the situation is opposite for the CO bond. The amount of CO is additionally correlated with a higher absorption at 420 nm indicating that strong colored melanoidins contain more carbonyl functions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call