Abstract

Covalently closed circular plasmid DNA was treated with three reactive derivatives of 2-acetylaminofluorene: N-acetoxy-N-2-acetylaminofluorene (N-Aco-AAF), its 7-iodo derivative (N-Aco- AAIF ) and N-hydroxy-N-2-aminofluorene (N-OH-AF), and tested as substrates for the Escherichia coli uvrABC endonuclease and for transformation frequencies on wild-type, uvrA, recA, uvrArecA and polA mutant strains. The uvrABC endonuclease reacted with all three substrates with high efficiency, implicating this enzyme in the repair of DNA containing all three types of adducts. However, only AAF- and AAIF -DNA showed greatly reduced survival on uvrA mutants (five adducts/lethal hit) relative to wild-type (20 adducts/lethal hit). AF-DNA survived equally well on uvrA mutant and wild-type cells, and at a much higher level of modification (60 adducts/lethal hit). A mutation in recA had only a minor effect on the survival of either DNA. The polA mutation reduced the survival of the AAF-treated DNA to the same extent as the uvrA mutation (five adducts/lethal hit). Also AF-DNA showed reduced survival on polA mutant cells versus wild-type. However, many more adducts (20/lethal hit) were tolerated than for AAF-DNA, indicating that AF lesions in the template do not efficiently block replication of DNA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.