Abstract
It is shown that the two effects of antisymmetry (Pauli exclusion principle) within the correct SCF wavefunctions cannot bend linear H/sub 2/O or planar NH/sub 3/ without classical electronic coulombic repulsion (CER) between LMO charge clouds in the SCF energy expression. These two effects are the orthogonality of the molecular orbitals (MOs) and the electron-exchange interactions between the LMOs. This result is in direct contradiction to the presently accepted valence shell electron pair repulsion (VSEPR) model, which attributes the geometries of molecules to Pauli forces between localized electron pairs. It is argued that the Walsh MO energy correlation diagrams, based on the integral Hellmann-Feynman theorem, are a more correct simple model for molecular geometries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.