Abstract

The validity of the valence shell electron pair repulsion model (VSEPR) is discussed within the framework of an antisymmetric product of strongly orthogonal geminals (APSG). It is shown that when a molecule is partitioned onto fragments consisting of a central fragment, lone pairs, bond pairs, and ligands, the total APSG energy including the nuclear repulsion terms, can be written as a sum of intra- and interfragment energies. The VSEPR terms can be identified as three out of 13 different energy components. The analysis is applied to the water molecule. Six of the neglected energy components in the VSEPR model have a larger variation with the bond angle than the terms which are included in the model. According to this analysis it is difficult to consider the VSEPR model as a valid framework for discussing molecular equilibrium geometries. It is suggested that energy fragment analysis might represent an alternative model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.