Abstract

Using extensive tight-binding calculations, we investigate (including the spin) the Aharonov-Bohm (AB) effect in monolayer and bilayer trigonal and hexagonal graphene rings with zigzag boundary conditions. Unlike the previous literature, we demonstrate the universality of integer ($hc/e$) and half-integer ($hc/2e$) values for the period of the AB oscillations as a function of the magnetic flux, in consonance with the case of mesoscopic metal rings. Odd-even (in the number of Dirac electrons, $N$) sawtooth-type patterns relating to the halving of the period have also been found; they are more numerous for a monolayer hexagonal ring, compared to the cases of a trigonal and a bilayer hexagonal ring. Additional, more complicated patterns are also present, depending on the shape of the graphene ring. Overall, the AB patterns repeat themselves as a function of $N$, with periods proportional to the number of the sides of the rings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.