Abstract
The electronic structure and magnetic response of hexagonal graphene rings have been studied within the tight-binding formalism. The calculations show that hexagonal graphene rings possess unusually large diamagnetic moments in the presence of a perpendicular magnetic field. The magnetic-field-driven carriers flow clockwise and anticlockwise along the inner and outer edge of rings owing to quantum Hall effect. The value of magnetic moment is almost proportional to the number of atoms of rings, due to more conduction electrons participating in magnetic moment forming process. Additionally, we find the diamagnetic moment shows a relative weak dependence on the temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.