Abstract

BackgroundIncreased motor activity is a defining characteristic of patients with ADHD, and spontaneously hypertensive rats have been suggested to be an animal model of this disorder. In the present study, we wanted to use linear and non-linear methods to explore differences in motor activity patterns in SHR/NCrl rats compared to Wistar Kyoto (WKY/NHsd) rats.MethodsA total number of 42 rats (23 SHR/NCrl and 19 WKY/NHsd, male and female) were tested. At PND 51, the animals’ movements were video-recorded during an operant test procedure that lasted 90 min. Total activity level and velocity (mean and maximum), standard deviation (SD) and root mean square successive differences (RMSSD) were calculated. In addition, we used Fourier analysis, autocorrelations and two measures of complexity to characterize the time series; sample entropy and symbolic dynamics.ResultsThe SHR/NCrl rats showed increased total activity levels in addition to increased mean and maximum velocity of movements. The variability measures, SD and RMSSD, were markedly lower in the SHR/NCrl compared to the WKY/NHsd rats. At the same time, the SHR/NCrl rats displayed a higher complexity of the time series, particularly with regard to the total activity level as evidenced by analyses of sample entropy and symbolic dynamics. Autocorrelation analyses also showed differences between the two strains. In the Fourier analysis, the SHR/NCrl rats had an increased variance in the high frequency part of the spectrum, corresponding to the time period of 9–17 s.ConclusionThe findings show that in addition to increased total activity and velocity of movement, the organization of behavior is different in SHR/NCrl relative to WKY/NHsd controls. Compared to controls, behavioral variability is reduced in SHR/NCrl at an aggregate level, and, concomitantly, more complex and unpredictable from moment-to-moment. These finding emphasize the importance of the measures and methods used when characterizing behavioral variability. If valid for ADHD, the results indicate that decreased behavioral variability can co-exist with increased behavioral complexity, thus representing a challenge to current theories of variability in ADHD.

Highlights

  • Increased motor activity is a defining characteristic of patients with attention-deficit/hyperactivity disorder (ADHD), and spontaneously hypertensive rats have been suggested to be an animal model of this disorder

  • Calculating variability for total motor activity without correcting for mean values showed higher variability for SHR/NCrl compared to WKY/ NHsd rats, with values that were 214, 284 and 275% of the corresponding values for the WKY/NHsd rats in the three sequences

  • For root mean square successive differences (RMSSD), the absolute values were higher for SHR/NCrl compared to WKY/NHsd rats with values that were 108, 111 and 113% of the corresponding values for the WKY/NHsd rats in the three sequences (Table 4)

Read more

Summary

Introduction

Increased motor activity is a defining characteristic of patients with ADHD, and spontaneously hypertensive rats have been suggested to be an animal model of this disorder. Studies of Spontaneously hypertensive (SHR/NCrl) rats have been suggested to be an animal model of ADHD [19], and in several test paradigms display behavior similar to that seen in patients with ADHD, including increased motor activity, impulsivity, and inattention. Another similar feature observed in the behavior of SHR/NCrl is increased IIV. Non-linear methods, such as different measures of complexity and entropy, have in recent years been employed to analyze biological time series Such methods may give additional information to that obtained by traditional linear methods, and can be used to identify the underlying neural mechanisms of the system being studied

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call