Abstract

Broad-scale patterns of resource utilization and the corresponding morphological evolution is a result of an integral relationship among form and function. In addition, there is also an inherent role of the latter in determining species co-interaction and assemblage pattern that forms an integral aspect of ecological research. The present study aimed to evaluate the ecomorphological relationship among 37 fish species inhabiting the intertidal mudflats of the Indian Sundarbans by outlining the following objectives: (i) identifying and characterizing feeding guilds/groups and (ii) understanding the inter-relationship between morphometry with (a) the established feeding guild classifications and (b) observed prey taxa (that characterizes these feeding groups) for determining the role of morphometry in prey acquisition followed by (iii) the evaluation of their potential phylogenetic convergence among the species. For the first objective, two approaches for feeding guild classification were made (3-Guild and 8-Guild) for assessing the prediction accuracy of morphological characters in identifying the different guilds. While the former was based on troph values, the latter classification mode relied on the similarities in diet composition among the different fish species. For addressing the second objective, we employed two different models namely, linear discriminant (LDA) and redundancy analysis (RDA). While the LDA model tested the prediction accuracy of morphological traits in classifying the different feeding guilds, RDA was applied to model the correlation between the morphological traits and the prey categories. In the LDA model, morphological characters showed higher accuracy (78.4%) in classifying three feeding groups rather than eight feeding groups (73%). Following this, the RDA model (explaining 79.78% of constrained variance) showed gill raker intensity, protrusion length, head depth, caudal peduncle, eye diameter and inter-orbital distance to be highly associated with selection of specific prey types by species, thereby characterizing a particular feeding guild. However, generalized linear models testing for correlation between troph value and feeding groups showed substantial variation (90.35%) in the dietary index being explained by the 8-Guild classification. Hence, our study maintains the assumption that broad morphological differentiation acts as one of the underlying processes resulting in dietary variations that results in the varying modes of resource utilization by the coexisting species, thereby determining the structure of a trophic guild. Furthermore, it also suggests that in terms of prey abundance or selectivity, the 8-Guild model is much more conducive in representing the feeding habits of the species while the morphological traits reflected a relatively broader scheme of classification, (i.e., 3-Guild model) with certain traits being phylogenetically conserved within these groups.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call