Abstract

One of the remarkable aspects of the tremendous biodiversity found in tropical forests is the wide range of evolutionary strategies that have produced this diversity, indicating many paths to diversification. We compare two diverse groups of trees with profoundly different biologies to discover whether these differences are reflected in their genomes. Ficus (Moraceae), with its complex co-evolutionary relationship with obligate pollinating wasps, produces copious tiny seeds that are widely dispersed. Lithocarpus (Fagaceae), with generalized insect pollination, produces large seeds that are poorly dispersed. We hypothesize that these different reproductive biologies and life history strategies should have a profound impact on the basic properties of genomic divergence within each genus. Using shallow whole genome sequencing for six species of Ficus, seven species of Lithocarpus, and three outgroups, we examined overall genomic diversity, how it is shared among the species within each genus, and the fraction of this shared diversity that agrees with the major phylogenetic pattern. A substantially larger fraction of the genome is shared among species of Lithocarpus, a considerable amount of this shared diversity was incongruent with the general background history of the genomes, and each fig species possessed a substantially larger fraction of unique diversity than Lithocarpus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call