Abstract

β-Caryophyllene possesses potential anticancer properties against various cancers, including breast, colon, and lung cancer. Therefore, the essential oil of Ayapana triplinervis, which is rich in β-caryophyllene, can be a potential herbal remedy for treating cancer. However, molecular and genomic studies on A. triplinervis are still sparse. In this study, we obtained 14.7 Gb of RNA-Seq data from A. triplinervis leaf RNA and assembled 1,37,554 transcripts with an N50 value of 1,437 bp. We annotated 72,436 (52.7%) transcripts and mapped 10,640 transcripts to 156 biochemical pathways. Among them, 218 were related to terpenoid backbone biosynthesis, while 27 were linked to sesquiterpenoid and triterpenoid pathways. Ninety-four transcripts were annotated in the β-caryophyllene and lupeol pathways. From these transcripts, for the first time, we identified 25 full-length genes encoding all the 17 enzymes involved in β-caryophyllene biosynthesis and an additional five genes involved in lupeol biosynthesis. These genes will be useful for the metabolic engineering of β-caryophyllene and lupeol biosynthesis, not just in A. triplinervis but also in other species. Keywords: β-caryophyllene, Eupatorium ayapana, Eupatorium triplinervis, lupeol, transcriptome.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call