Abstract

Studies of directional asymmetry in the human upper limb have extensively examined bones of the arm, forearm, and hand, but have rarely considered the clavicle. Physiologically, the clavicle is an integrated element of the upper limb, transmitting loads to the axial skeleton and supporting the distal bones. However, clavicles develop in a manner that is unique among the bones of the upper limb. Previous studies have indicated that the clavicle has a right-biased asymmetry in diaphyseal breadth, as in humeri, radii, ulnae, and metacarpals, but unlike these other elements, a left-biased length asymmetry. Few studies have assessed how clavicular asymmetry relates to these other bones of the upper limb. Bilateral directional asymmetry of the clavicle is examined in relation to the humerus in a large, geographically diverse human sample, comparing lengths and diaphyseal breadths. Dimensions were converted into percentage directional (%DA) and absolute (%AA) asymmetries. Results indicate that humans have same-side %DA bias in the clavicles and humeri, and contralateral length %DA between these elements. Diaphyseal breadths in both clavicles and humeri are more asymmetric—both in direction and amount—than lengths. Differences in diaphyseal asymmetry are shown to relate to variation in physical activities among groups, but a relationship between activity and length asymmetry is not supported. This further supports previous research, which suggests different degrees of sensitivity to loading between diaphyseal breadths and maximum lengths of long bones. Differences in lateralized behavior and the potential effects of different bone development are examined as possible influences on the patterns observed among human groups.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call