Abstract

Plant, soil, and microbial biomass ratios of carbon (C), nitrogen (N), and phosphorus (P) are crucial in maintaining stability of desert ecosystems. Nevertheless, variation in relations of elemental ratios between different life forms of plants and soil and microbial biomass in desert ecosystems remains unclear. In a hyper-arid desert ecosystem, C, N, and P concentrations and ratios were analyzed in the plant-soil-microbial biomass system of three perennial desert species (Alhagi sparsifolia Shap. [Herb, Fabaceae], Karelinia caspica Pall. [Herb, non-Fabaceae], and Tamarix ramosissima Ledeb. [Shrub]). Concentrations of N and P in Alhagi sparsifolia leaf, stem, and root were significantly greater than those in Karelinia caspica and Tamarix ramosissima, whereas plant C and soil organic C (SOC) were highest with Tamarix ramosissima. Alhagi sparsifolia and Tamarix ramosissima were P-limited, whereas Karelinia caspica was N-limited. According to correlation analysis, SOC rather than soil total P (STP) regulated plant N:P ratios, and microbial biomass C, N, and P rather than SOC, soil total N, and STP regulated plant C:N:P ratios. Soil water content also affected plant nutrient balance. Thus, in a hyper-arid desert ecosystem, the plant-soil-microbial biomass system and the balance of C, N, and P are closely related, and the role of soil microbial biomass in affecting plant nutrient balance should receive increased attention.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call