Abstract
AbstractThe variability in stocks and accumulation rates of organic carbon (Corg), nitrogen (N), and carbonate (CaCO3) was studied in fifteen Posidonia oceanica meadows spread throughout the South Aegean Sea (Greece). In addition, the abiotic and biotic drivers determining the pattern of variability in the accumulation rates were assessed by exploring the influence of sediment characteristics, seagrass traits, and environmental settings. The meadows supported on average (±STDEV) 14.6 ± 5.0 kg Corg m−2, 0.47 ± 0.17 kg N m−2, and 249 ± 210 kg CaCO3 m−2 in the top meter of their sediments, with mean accumulation rates over the last 500 years of 33.6 ± 23.6 g Corg m−2 yr−1, 1.00 ± 0.62 g N m−2 yr−1, and 405 ± 336 g CaCO3 m−2 yr−1 across sites. A redundancy analysis (RDA) explained 70% of the variation in Corg, N, and CaCO3 accumulation rates, with three sediment characteristics (i.e., sediment Corg:N and Corg:Cinorg ratios and P. oceanica contribution to the sediment Corg pool) emerging as the primary set of factors shaping the accumulation of matter, followed by seagrass traits (i.e., leaf biomass and rhizome elongation) and environmental variables (i.e., suspended organic matter). The high degree of variability within the region emphasizes the need for fine‐scale assessments to understand the local conditions influencing sequestration. Our findings underscored the critical role of seagrass meadows in carbon and nitrogen sequestration in the region, urging conservation efforts to protect these ecosystems and prevent potential losses of stored carbon and nitrogen following seagrass degradation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.