Abstract

Identifying mechanisms influencing early-life survival may elucidate recruitment variability of fish populations. Yellow perch (Perca flavescens), are economically and ecologically important in Saginaw Bay, Lake Huron, but have recently experienced low recruitment despite strong production of age-0 fish. Recent year classes have been characterized by slow first-year growth, as indexed by fall size of age-0 yellow perch; however, seasonal growth patterns and accompanying diet and survivorship patterns have not been documented for age-0 yellow perch in Saginaw Bay. To this end, we collected age-0 yellow perch weekly (larvae) and monthly (juveniles) throughout the first year of life during 2009 and 2010 to track changes in growth and diet composition. We also evaluated predation and over-winter energy-loss as potential mechanisms of size-selective mortality. Yellow perch growth, energy accumulation and size-specific condition decreased during late summer and fall. During larval and juvenile stages, predominant components of yellow perch diets transitioned from copepods to Daphnia and other zooplankton; however, we observed only weak ontogenetic shifts toward benthic prey. Smaller yellow perch a) were preferentially preyed upon by walleye (the bay's main piscivore) and b) displayed lower mass-specific energy content, potentially increasing overwinter starvation risk, suggesting that slow growth increases mortality risk. Our results are consistent with the hypothesis that recruitment dynamics are influenced by an interplay of size-selective mortality and diet-induced reductions in growth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call