Abstract

We evaluated seasonal energy content of age-0 yellow perch Perca flavescens and walleye Sander vitreus in Saginaw Bay, Lake Huron in 2009 and 2010. We also determined the energy content of age-1 fish from the 2009 and 2010 cohorts the following spring (i.e., for fish that had survived one winter) to evaluate overwinter energy losses. As expected, larger fish within each species had disproportionately higher energy content (i.e., slope relating length and energy >3.0) than smaller conspecifics. By contrast to expectations, allometric slopes were >3.0 in nearly all months, not just the fall, and were higher for age-0 yellow perch than for walleye, even though increased allocation to growth would have seemingly been beneficial to even the largest yellow perch during summer. Seasonal energy allocation patterns differed between years. In 2009, length specific energy content increased from late summer to fall for both species. However, for the 2010 cohorts of fish, length specific energy content decreased between late summer and fall for yellow perch and did not change for walleye. There were 13–17% overwinter declines in length specific energy content between the fall (October or November) and the spring (May) with no major differences between cohorts within a species or between species for a given year. Because young yellow perch and walleye are similar physiologically but differ in size (i.e., yellow perch are smaller), it is possible that overwinter energy losses are more important for yellow perch than for walleye.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call