Abstract
AbstractAim To examine patterns in anuran species richness along an elevation gradient and identify factors that govern anuran species richness on a tropical elevational gradient.Location Sampling for anurans was carried out in Kalakad Mundanthurai Tiger Reserve (KMTR) in the southern Western Ghats, India.Methods Night‐time sampling for anuran species richness was carried out from 20 November 2004 to 20 April 2005, during the north‐east monsoon and dry seasons, using transects (50 × 2 m) and visual encounter surveys along the streams. The entire gradient was classified into thirteen 100‐m elevation zones. Sampling at the alpha (single drainage basin) level was carried out in the Chinnapul River drainage basin (40–1260 m a.s.l.) and at the gamma (landscape) level in four drainage basins. Additionally, published records were used to arrive at an empirical species richness (S) for the entire landscape. Mid‐Domain Null software was used to test for the possible influence of geometric constraints on anuran species at both the alpha and gamma levels. The influence of area under each elevation zone on empirical S was tested. The pattern in anuran species richness along the elevational gradient was investigated using: (1) species boundaries in each elevation zone and their habitat correlates, (2) abiotic factors as predictor variables, (3) mean snout vent lengths of anurans, and (4) correlation between the matrices of distance in the elevation zones based on microhabitat parameters and species composition. Cluster analysis on species presence–absence in the elevation zones was used to categorize the entire gradient into high, middle and low elevations. In these three elevation categories, pattern in composition of species was examined for endemism in Western Ghats–Sri Lanka biodiversity hotspot, uniqueness to an elevation zone, adaptations of adults and modes of breeding.Results Species richness at the alpha level increased linearly with elevation, while at the gamma level there were three peaks. Maximum species richness was observed at the highest elevation (1200 m) at both the alpha and the gamma levels. The observed patterns differed significantly from mid‐domain null predictions. The multi‐modal pattern in species richness was a consequence of overlapping species range boundaries. Soil temperature was the best single measure in explaining the majority of variation in species richness at the alpha level (r2 = 0.846, P < 0.01). However, soil moisture was the best predictor when both the alpha and the gamma sites were pooled (r2 = 0.774, P < 0.01). Anuran body size decreased with an increase in elevation. The highest proportions of endemic and unique species were found at high elevations (> 700 m). The proportion of arboreal anurans increased from low to high elevation. Anurans exhibiting direct development were predominantly found at high elevations.Main conclusions Geometric constraints did not influence anuran species richness along the elevational gradient. Overlapping range boundaries influenced species richness at the gamma level. Abiotic factors such as soil temperature and moisture influenced anuran species richness in the mountain range. The ‘Massenerhebung effect’ could be responsible for range restriction and endemism of anurans, differences in guilds and mode of reproduction. These findings highlight the importance of cloud forests for endemic anurans.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have