Abstract

Abstract It is well known that aboveground productivity usually increases with precipitation. However, how belowground carbon (C) processes respond to changes in precipitation remains elusive, although belowground net primary productivity (BNPP) represents more than one-half of NPP and soil stores the largest terrestrial C in the biosphere. This paper reviews the patterns of belowground C processes (BNPP and soil C) in response to changes in precipitation from transect studies, manipulative experiments, modeling and data integration and synthesis. The results suggest the possible existence of nonlinear patterns of BNPP and soil C in response to changes in precipitation, which is largely different from linear response for aboveground productivity. C allocation, root turnover time and species composition may be three key processes underlying mechanisms of the nonlinear responses to changes in precipitation for belowground C processes. In addition, microbial community structure and long-term ecosystem processes (e.g. mineral assemblage, soil texture, aggregate stability) may also affect patterns of belowground C processes in response to changes in precipitation. At last, we discuss implications and future perspectives for potential nonlinear responses of belowground C processes to changes in precipitation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call