Abstract
Prochlorococcus is a marine cyanobacterium that numerically dominates the mid-latitude oceans and is the smallest known oxygenic phototroph. Numerous isolates from diverse areas of the world's oceans have been studied and shown to be physiologically and genetically distinct. All isolates described thus far can be assigned to either a tightly clustered high-light (HL)-adapted clade, or a more divergent low-light (LL)-adapted group. The 16S rRNA sequences of the entire Prochlorococcus group differ by at most 3%, and the four initially published genomes revealed patterns of genetic differentiation that help explain physiological differences among the isolates. Here we describe the genomes of eight newly sequenced isolates and combine them with the first four genomes for a comprehensive analysis of the core (shared by all isolates) and flexible genes of the Prochlorococcus group, and the patterns of loss and gain of the flexible genes over the course of evolution. There are 1,273 genes that represent the core shared by all 12 genomes. They are apparently sufficient, according to metabolic reconstruction, to encode a functional cell. We describe a phylogeny for all 12 isolates by subjecting their complete proteomes to three different phylogenetic analyses. For each non-core gene, we used a maximum parsimony method to estimate which ancestor likely first acquired or lost each gene. Many of the genetic differences among isolates, especially for genes involved in outer membrane synthesis and nutrient transport, are found within the same clade. Nevertheless, we identified some genes defining HL and LL ecotypes, and clades within these broad ecotypes, helping to demonstrate the basis of HL and LL adaptations in Prochlorococcus. Furthermore, our estimates of gene gain events allow us to identify highly variable genomic islands that are not apparent through simple pairwise comparisons. These results emphasize the functional roles, especially those connected to outer membrane synthesis and transport that dominate the flexible genome and set it apart from the core. Besides identifying islands and demonstrating their role throughout the history of Prochlorococcus, reconstruction of past gene gains and losses shows that much of the variability exists at the “leaves of the tree,” between the most closely related strains. Finally, the identification of core and flexible genes from this 12-genome comparison is largely consistent with the relative frequency of Prochlorococcus genes found in global ocean metagenomic databases, further closing the gap between our understanding of these organisms in the lab and the wild.
Highlights
The oceans play a key role in global nutrient cycling and climate regulation
The eNATL2A clade appears to be a refinement on the HL/LL paradigm, as its isolates grow optimally at light intensities typical of the LL ecotype, but have the photoprotective abilities of the HL ecotype
Most core genes retrieve a similar number of GOS hits, as one would expect from single copy genes shared by all Prochlorococcus, resulting in a relatively tight frequency distribution
Summary
The oceans play a key role in global nutrient cycling and climate regulation. The unicellular cyanobacterium Prochlorococcus is an important contributor to these processes, as it accounts for a significant fraction of primary productivity in low- to mid-latitude oceans [1]. Prochlorococcus and its close relative, Synechococcus [2], are distinguished by their photosynthetic machinery: Prochlorococcus uses chlorophyll-binding proteins instead of phycobilisomes for light harvesting and divinyl instead of monovinyl chlorophyll pigments. Prochlorococcus and Synechocococcus coexist throughout much of the world’s oceans, Synechococcus extends into more polar regions and is more abundant in nutrient-rich waters, while Prochlorococcus dominates relatively warm, oligotrophic regions and can be found at greater depths [3].
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have