Abstract

The effect of glass transition temperature, Tg, on the self-assembly of "honeycomb" microstructures on nonplanar substrates was probed by the synthesis of a library of core cross-linked star polymers with different arm compositions. Star polymers based on poly(dimethyl siloxane), poly(ethyl acrylate), poly(methyl acrylate), poly(tert-butyl acrylate), and poly(methyl methacrylate) were synthesized by the "arm first" strategy using atom-transfer radical polymerization. Reaction conditions were optimized, and a series of high molecular weight star polymers were prepared in high yield. The glass transition temperature of the star polymers ranged from -123 to 100 degrees C which allowed the suitability for the formation of porous honeycomb-like films via the "breath figure" technique on nonplanar surfaces to be investigated. All star compositions successfully formed ordered films on flat surfaces. However, only star polymer compositions with a Tg below 48 degrees C could form homogeneous honeycomb coatings on the surface of nonplanar substrates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call