Abstract

The vitamin B8‐based macroinitiator with six 2‐bromoisobutyric initiating sites was prepared for the first time by the transesterification reaction of meso‐inositol with 2‐bromoisobutyryl bromide. A series of six‐armed (co)polymers, containing hydrophilic poly(di(ethylene glycol) methyl ether methacrylate) and amphiphilic poly(di(ethylene glycol) methyl ether methacrylate)‐block‐poly(methyl methacrylate) as the arms and meso‐inositol as the core, were obtained by low ppm atom transfer radical polymerization (ATRP) methods, utilizing 30 ppm of catalyst complex. Under Fe0‐mediated supplemental activators and reducing agents ATRP, Cu0‐mediated supplemental activators and reducing agents ATRP, Ag0‐mediated activators regenerated by electron transfer ATRP, and simplified electrochemically mediated ATRP conditions, polymerization proceeded on to high conversion while maintaining low dispersity (Đ = 1.05–1.16) giving well‐defined six‐armed star (co)polymers. 1H NMR spectral results confirm the formation of new star‐shaped block (co)polymers. The absence of intermolecular coupling reactions during synthesis was confirmed by gel permeation chromatography analyses of the side chains of received star (co)polymers. These vitamin B8‐based star (co)polymers may find biomedical applications as thermo‐sensitive drug delivery systems, biosensors, and tissue engineering solutions. Copyright © 2017 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call