Abstract
Carbon Tetraflouride (CF4) plasma etching condition for SU-8 negative photoresist is characterized for its potential applications in photonics and bioMEMS. The effects of main plasma etching parameters such as rf power, gas flow rate, chamber pressure and time were systematically studied and the parameters were optimized by a three-level, L9 orthogonal array of the Taguchi method. By optimization, the optimal parameter range and the weighted percent of each parameter on the final results i.e. depth, surface roughness and wall angle were determined. Photoresist & metal were used and compared as masks for plasma etching. The minimum feature size was 1µm in both cases. Results indicated that with the increase of rf power, etch rate and roughness increases almost linearly. With increase in gas flow rate, etch rate increases while roughness decreases non-linearly. Etch rate is linear with time but roughness is significantly dependent on time initially. The side-wall angle of the samples with metal mask was found to be nearly 90° whereas samples with photoresist as the mask showed poor side-wall angle and surface roughness mainly due to poor mask-resist selectivity. Optimized values of rf power, gas flow rate, time and pressure were found to be 200W, 240sccm, 20minutes and 1Torr respectively, which yielded high etch rate (80nm/min), low surface roughness (5nm) and nearly vertical side-walls (89°).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.