Abstract

We demonstrate the patterning of monolayer silica microsphere lattices with tightly focused femtosecond laser pulses. We selectively removed microspheres from a lattice and characterized the effect on the lattice and the substrate. The proposed physical mechanism for the patterning process is laser-induced breakdown followed by ablation of material. We show that a microsphere focuses radiation in its interior and in the near field. This effect plays an important role in the patterning process by enhancing resolution and accuracy and by reducing the pulse energy threshold for damage. Microsphere patterning could create controlled defects within self-assembled opal photonic crystals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call