Abstract

The Laser Induced Breakdown Spectroscopy (LIBS), is a technique that has been firmly established for the rapid determination of the elemental composition (Cremers, 2006). It relies on material ablation by using a short duration laser pulse with high density energy enough to produce plasma. By analyzing the light emitted by the plasma, it is possible to determine the elemental composition of practically any material. This technique has significant advantages over other conventional analytical techniques (Cremers, 2007; Rusak et al., 1998; Song et al., 1997). For example, requires no sample preparation, may be performed in solid, liquid or gas phase in samples with any shape or dimension. Moreover, it allows an in-depth study in order to characterize the composition of multi-component material (Adamson et al., 2007; Radziemski et al., 1983). It is especially suitable for field work by offering the possibility of real-time analysis with high portability. Thanks the above mentioned advantages, the LIBS technique has experienced strong growth, which is reflected in a large and growing number of publications. LIBS is not a new technique: firsts laser-induced breakdown studies go back to the early 1960s and important application studies date from the 1980s with the work of Radziemski (Tognoni et al., 2002). A comprehensive review of LIBS development and applications through the mid-1990s was produced by Rusak et al.(Rusak et al., 1997). The technique has many attributes that make it an attractive tool for chemical analysis, particularly as regards its potential as a field-portable sensor for geochemical analysis. LIBS is relatively simple and straightforward, so skilled analysts are not required. Little to no sample preparation is required, which eliminates the possibility of adulteration of the sample through improper handling or storage or cross-contamination during sample preparation. LIBS provides a real-time response and simultaneous multi-element detection and analysis. The laser plasma is formed over a very limited spatial area, so that only a very small amount of sample (picograms to nanograms) is engaged in each laser micro-plasma event. All components of the instrument can be made small and rugged for field use and LIBS sensors can be operated either as a point sensor or in a standoff detection mode. The

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call