Abstract

Rectangle- and triangle-shaped microscale graphene films are grown on epitaxial Co films deposited on single-crystal MgO substrates with (001) and (111) planes, respectively. A thin film of Co or Ni metal is epitaxially deposited on a MgO substrate by sputtering while heating the substrate. Thermal decomposition of polystyrene over this epitaxial metal film in vacuum gives rectangular or triangular pit structures whose orientation and shape are strongly dependent on the crystallographic orientation of the MgO substrate. Raman mapping measurements indicate preferential formation of few-layer graphene films inside these pits. The rectangular graphene films are transferred onto a SiO(2)/Si substrate while maintaining the original shape and field-effect transistors are fabricated using the transferred films. These findings on the formation of rectangular/triangular graphene give new insights on the formation mechanism of graphene and can be applied for more advanced/controlled graphene growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.