Abstract

Patterned irradiation of cuprate superconductors with columnar defects allows a new generation of experiments that can probe the properties of vortex liquids by confining them to controlled geometries. Here we show that an analysis of such experiments that combines an inhomogeneous Bose glass scaling theory with the hydrodynamic description of viscous flow of vortex liquids can be used to infer the critical behavior near the Bose glass transition. The shear viscosity is predicted to diverge as $|T\ensuremath{-}{T}_{\mathrm{BG}}{|}^{\ensuremath{-}z}$ at the Bose glass transition, with $z\ensuremath{\simeq}4.6$ the dynamical critical exponent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.