Abstract

Nucleotide-binding domain and leucine-rich repeat containing receptors (NLRs) are a pivotal intracellular pattern recognition receptor family. However, studies on NLR genes in important economic fish grass carp (Ctenopharyngodon idella) are sporadic. The accumulations of genomic resource and transcriptomic sequences make it feasible to conduct a systematic analysis of these genes. In this study, we systematically conducted the genome-wide study of C. idella NLR genes and characterized their phylogeny, gene structure, conserved domain, evolutionary mechanism, and expression profiles post viral or bacterial challenge. A total of 65 NLR genes were identified and clustered into five subfamilies based on structural and phylogenetic features, including eight NODs (NLR-A), five NLRP-like receptors (NLR-B), forty-seven teleost-specific NLRs (NLR-C), two members with a B30.2 domain at the C-terminal (NLR-B30.2), and three additional NLRs (other NLRs). Gene structure analysis showed that NLRs were significantly different, with exon numbers from 3 to 31. Conserved domain analysis showed that most members of C. idella NLRs had additional domains besides the typical NLR domains. Gene duplication analysis indicated that the evolution of the NLR gene family was mainly related to segment duplication. mRNA expression analysis indicated that many members were differently expressed in multiple tissues post grass carp reovirus (GCRV) or Aeromonas hydrophila infection. The expression was particularly enhanced in liver post GCRV infection, and obviously lower post A. hydrophila infection than that post GCRV infection in spleen. These results provide systematic basic data for further functional studies of NLR, and insight into the immune responses of piscine fish NLRs to pathogen infections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call