Abstract
Obesity has been linked to lower cognitive function, while exercise is known to be beneficial in enhancing the cognitive function. Exercise is also known to increase brain-derived neurotrophic factor (BDNF), as the biological marker of cognitive function. This study aimed to analyse the pattern of serum BDNF levels after acute interval exercise (MIE) versus acute continuous exercise (MCE) in obese adolescent females. A total of 24 obese females were enrolled in this study and given acute interval exercise and acute continuous exercise with moderate intensity. The serum level of BDNF in all samples was quantified using ELISA. Statistical analysis was performed using two-way repeated measures ANOVA, and LSD post-hoc test with a 5% significance level. The results revealed pre-exercise mean serum BDNF levels of 254.17±86.90 pg/ml (Control), 263.21±79.82 pg/ml (MIE) and 266.01±33.29 pg/ml (MCE) (P=0.948). The mean serum BDNF levels at 10 min post-exercise were 248.84±44.42 pg/ml (Control), 397.00±31.36 pg/ml (MIE), and 582.82±79.24 pg/ml (MCE) (P=0.000). The mean serum BDNF levels at 6 h post-exercise were 250.05±70.44 pg/ml (Control), 344.50±68.84 pg/ml (MIE), and 364.42±100.87 pg/ml (MCE) (P=0.029). The mean serum BDNF levels at 24 h post-exercise were 244.20±48.55 pg/ml (Control), 252.49±89.11 pg/ml (MIE), and 250.99±65.86 pg/ml (MCE) (P=0.986). It was concluded that serum BDNF in obese adolescent females increased but transiently. Serum BDNF levels increased by acute exercise in both MIE and MCE at 10 min and 6 h post-exercise. However, serum BDNF level at 24 h post-exercise decreased close to the pre-exercise serum BDNF level in all groups. Further research is needed studying the effect of chronic exercise on the kinetics of serum BDNF levels in obese adolescent females.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have