Abstract
A model of mobile, charged ion channels in a fluid membrane is studied. The channels may switch between an open and a closed state according to a simple two-state kinetics with constant rates. The effective electrophoretic charge and the diffusion constant of the channels may be different in the closed and in the open state. The system is modeled by densities of channel species, obeying simple equations of electrodiffusion. The lateral transmembrane voltage profile is determined from a cable-type equation. Bifurcations from the homogeneous, stationary state appear as hard-mode, soft-mode, or hard-mode oscillatory transitions within physiologically reasonable ranges of model parameters. We study the dynamics beyond linear stability analysis and derive nonlinear evolution equations near the transitions to stationary patterns.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physical review. E, Statistical, nonlinear, and soft matter physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.