Abstract

Reaction-diffusion models for biological pattern formation have been studied extensively in a variety of embryonic and ecological contexts. However, despite experimental evidence pointing to the existence of spatial inhomogeneities in various biological systems, most models have only been considered in a spatially homogeneous environment. The authors consider a two-chemical reaction-diffusion mechanism in one space dimension in which one of the diffusion coefficients depends explicitly on the spatial variable. The model is analysed in the case of a step function diffusion coefficient and the insight gained for this special case is used to discuss pattern generation for smoothly varying diffusion coefficients. The results show that spatial inhomogeneity may be an important biological pattern regulator, and possible applications of the model to chondrogenesis in the vertebrate limb are suggested.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.