Abstract
Sinkholes are significant geohazards in karst regions that pose risks to landscapes and infrastructure by disrupting geological stability. Usually, sinkholes are mapped by field surveys, which is very cost-intensive with regard to vast coverages. One possible solution to derive sinkholes without entering the area is the use of high-resolution digital terrain models, which are also expensive with respect to remote areas. Therefore, this study focusses on the mapping of sinkholes in arid regions from open-access remote sensing data. The case study involves data from the Sentinel missions over the Mangystau region in Kazakhstan provided by the European Space Agency free of cost. The core of the technique is a multi-scale curvature filter bank that highlights sinkholes (and takyrs) by their very special illumination pattern in Sentinel-2 images. Marginal confusions with vegetation shadows are excluded by consulting the newly developed Combined Vegetation Doline Index based on Sentinel-1 and Sentinel-2. The geospatial analysis reveals distinct spatial correlations among sinkholes, takyrs, vegetation, and possible surface discharge. The generic and, therefore, transferable approach reached an accuracy of 92%. However, extensive reference data or comparable methods are not currently available.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have