Abstract

IntroductionHuman induced pluripotent stem cells (hiPSCs) offer a unique opportunity for disease modeling. However, it is not invariably successful to recapitulate the disease phenotype because of the immaturity of hiPSC-derived cardiomyocytes (hiPSC-CMs). The purpose of this study was to establish and analyze iPSC-based model of catecholaminergic polymorphic ventricular tachycardia (CPVT), which is characterized by adrenergically mediated lethal arrhythmias, more precisely using electrical pacing that could promote the development of new pharmacotherapies.Method and ResultsWe generated hiPSCs from a 37-year-old CPVT patient and differentiated them into cardiomyocytes. Under spontaneous beating conditions, no significant difference was found in the timing irregularity of spontaneous Ca2+ transients between control- and CPVT-hiPSC-CMs. Using Ca2+ imaging at 1 Hz electrical field stimulation, isoproterenol induced an abnormal diastolic Ca2+ increase more frequently in CPVT- than in control-hiPSC-CMs (control 12% vs. CPVT 43%, p<0.05). Action potential recordings of spontaneous beating hiPSC-CMs revealed no significant difference in the frequency of delayed afterdepolarizations (DADs) between control and CPVT cells. After isoproterenol application with pacing at 1 Hz, 87.5% of CPVT-hiPSC-CMs developed DADs, compared to 30% of control-hiPSC-CMs (p<0.05). Pre-incubation with 10 μM S107, which stabilizes the closed state of the ryanodine receptor 2, significantly decreased the percentage of CPVT-hiPSC-CMs presenting DADs to 25% (p<0.05).ConclusionsWe recapitulated the electrophysiological features of CPVT-derived hiPSC-CMs using electrical pacing. The development of DADs in the presence of isoproterenol was significantly suppressed by S107. Our model provides a promising platform to study disease mechanisms and screen drugs.

Highlights

  • Human induced pluripotent stem cells offer a unique opportunity for disease modeling

  • Action potential recordings of spontaneous beating Human induced pluripotent stem cells (hiPSCs)-CMs revealed no significant difference in the frequency of delayed afterdepolarizations (DADs) between control and catecholaminergic polymorphic ventricular tachycardia (CPVT) cells

  • We recapitulated the electrophysiological features of CPVT-derived hiPSC-CMs using electrical pacing

Read more

Summary

Introduction

Human induced pluripotent stem cells (hiPSCs) offer a unique opportunity for disease modeling. It is not invariably successful to recapitulate the disease phenotype because of the immaturity of hiPSC-derived cardiomyocytes (hiPSC-CMs). The purpose of this study was to establish and analyze iPSC-based model of catecholaminergic polymorphic ventricular tachycardia (CPVT), which is characterized by adrenergically mediated lethal arrhythmias, more precisely using electrical pacing that could promote the development of new pharmacotherapies

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.