Abstract
BackgroundWe previously found that cardioplegic arrest and cardiopulmonary bypass are associated with altered coronary arteriolar response to serotonin in patients undergoing cardiac surgery. In this study, we investigated the effects of hypertension on coronary microvascular vasomotor tone in response to serotonin and alterations in serotonin receptor protein expression in the setting of cardioplegic arrest and cardiopulmonary bypass. MethodsCoronary arterioles were dissected from harvested pre– and post–cardioplegic arrest and cardiopulmonary bypass right atrial tissue samples of patients undergoing cardiac surgery with normotension, well-controlled hypertension, and uncontrolled hypertension. Vasomotor tone was assessed by video-myography, and protein expression was measured with immunoblotting. ResultsPre–cardioplegic arrest and cardiopulmonary bypass, serotonin induced moderate relaxation responses of coronary arterioles in normotension and well-controlled hypertension patients, whereas serotonin caused moderate contractile responses in uncontrolled hypertension patients. Post–cardioplegic arrest and cardiopulmonary bypass, serotonin caused contractile responses of coronary arterioles in all 3 groups. The post–cardioplegic arrest and cardiopulmonary bypass contractile response to serotonin was significantly higher in the uncontrolled hypertension group compared with the normotension or well-controlled hypertension groups (P < .05). Pre–cardioplegic arrest and cardiopulmonary bypass, expression of the serotonin 1A receptor was significantly lower in the uncontrolled hypertension group compared with the well-controlled hypertension and normotension groups (P = .01 and P < .001). Serotonin 1B receptor expression was higher in the uncontrolled hypertension group compared with the normotension or well-controlled hypertension groups post–cardioplegic arrest and cardiopulmonary bypass (P = .03 and P = .046). ConclusionUncontrolled hypertension is associated with an increased coronary contractile response of coronary microvessels to serotonin and altered serotonin receptor protein expression after cardioplegic arrest and cardiopulmonary bypass. These findings may contribute to a worse postoperative coronary spasm and worsened recovery of coronary perfusion in patients with uncontrolled hypertension after cardioplegic arrest and cardiopulmonary bypass and cardiac surgery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.