Abstract

AbstractWhile total knee replacement is successful, hemiarthroplasty is necessary for some young, obese and active patients who are especially not suitable for unicompartmental or total knee prostheses. Hemiarthroplasty also provides an opportunity for children with bone tumors. The design of hemiarthroplasty should be patient-specific to reduce contact stress and friction as well as instability, compared to conventional hemi-knee prosthesis. A novel bipolar hemi-knee prosthesis with two flexion stages was developed according to a healthy male's knee morphological profile. The motion mode of the bipolar hemi-knee prosthesis was observed through roentgenoscopy in vitro experiment. The biomechanical properties in one gait cycle were evaluated though finite element simulation. The bipolar hemi-knee prosthesis was found to produce knee flexion at two stages through X-ray images. The first stage is the motion from upright posture to a specified 60° flexion, followed by the second stage of motion subsequently to deep flexion. The finite element simulation results also show that the designed hemi-knee prosthesis has the ability to reduce stresses on the joint contact surfaces. Therefore, it is possible for the bipolar hemi-knee prosthesis to provide better biotribological performances because it can reduce stresses and potentially wear on the opposing contacting surface during a gait cycle, providing a promising treatment strategy in future joint repair and replacement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.