Abstract
We introduce a new computational framework that utilises Pulse Wave Velocity (PWV) extracted directly from 4D flow MRI (4DMRI) to inform patient-specific compliant computational fluid dynamics (CFD) simulations of a Type-B aortic dissection (TBAD), post-thoracic endovascular aortic repair (TEVAR). The thoracic aortic geometry, a 3D inlet velocity profile (IVP) and dynamic outlet boundary conditions are derived from 4DMRI and brachial pressure patient data. A moving boundary method (MBM) is applied to simulate aortic wall displacement. The aortic wall stiffness is estimated through two methods: one relying on area-based distensibility and the other utilising regional pulse wave velocity (RPWV) distensibility, further fine-tuned to align with in vivo values. Predicted pressures and outlet flow rates were within 2.3 % of target values. RPWV-based simulations were more accurate in replicating in vivo hemodynamics than the area-based ones. RPWVs were closely predicted in most regions, except the endograft. Systolic flow reversal ratios (SFRR) were accurately captured, while differences above 60 % in in-plane rotational flow (IRF) between the simulations were observed. Significant disparities in predicted wall shear stress (WSS)-based indices were observed between the two approaches, especially the endothelial cell activation potential (ECAP). At the isthmus, the RPWV-driven simulation indicated a mean ECAP>1.4 Pa-1 (critical threshold), indicating areas potentially prone to thrombosis, not captured by the area-based simulation.RPWV-driven simulation results agree well with 4DMRI measurements, validating the proposed pipeline and facilitating a comprehensive assessment of surgical decision-making scenarios and potential complications, such as thrombosis and aortic growth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.