Abstract
Fast and reliable comprehensive quality assurance tools are required to validate the safety and accuracy of complex intensity-modulated radiotherapy (IMRT) plans for prostate treatment. In this study, we evaluated the performance of the COMPASS system for both off-line and potential online procedures for the verification of IMRT treatment plans. COMPASS has a dedicated beam model and dose engine, it can reconstruct three-dimensional dose distributions on the patient anatomy based on measured fluences using either the MatriXX two-dimensional (2D) array (offline) or a 2D transmission detector (T2D) (online). For benchmarking the COMPASS dose calculation, various dose-volume indices were compared against Monte Carlo-calculated dose distributions for five prostate patient treatment plans. Gamma index evaluation and absolute point dose measurements were also performed in an inhomogeneous pelvis phantom using extended dose range films and ion chamber for five additional treatment plans. MatriXX-based dose reconstruction showed excellent agreement with the ion chamber (<0.5%, except for one treatment plan, which showed 1.5%), film (∼100% pixels passing gamma criteria 3%/3 mm) and mean dose-volume indices (<2%). The T2D based dose reconstruction showed good agreement as well with ion chamber (<2%), film (∼99% pixels passing gamma criteria 3%/3 mm), and mean dose-volume indices (<5.5%). The COMPASS system qualifies for routine prostate IMRT pretreatment verification with the MatriXX detector and has the potential for on-line verification of treatment delivery using T2D.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Radiation Oncology, Biology, Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.