Abstract

This study aimed to evaluate the dose reduction potential of adding a tin filter to localizer radiographs (LR) on computed tomography (CT) examinations in both phantom and clinical studies. LRs were performed using combinations of 120 kVp and 20mA (120/20), 100 kVp with a tin filter, and 50mA or 20mA (Sn100/50, Sn100/20). For the phantom experiment, entrance surface doses (ESD) of the LRs were evaluated for each protocol using an anthropomorphic phantom. This retrospective clinical study included 700 patients (300 for chest-pelvis, 200 for spine, and 200 for head CTs). The volume CT dose indices (CTDIvols) of the main CT scans were recorded and placed into one of three groups based on body mass index (BMI): underweight, normal-weight, and overweight, to evaluate the effect of LR acquisition conditions on the performance of the automatic tube current modulation technique of subsequent CT scans. The ESDs of all LRs with the Sn100/50 protocol were 0.03mGy, a decrease of more than 80% compared to those of the 120/20 protocol. Moreover, the Sn100/20 protocol reduced ESD to 0.02mGy. In chest-pelvis CT, there were no significant differences in the CTDIvol between with and without a tin filter for each BMI group. However, the lateral LRs with the tin filter on the spine CT slightly reduced the CTDIvol in normal-weight and overweight patients. Although there is room to optimize the acquisition conditions for larger patients, an additional tin filter for LR is a useful means to efficiently reduce ESDs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call