Abstract

This article is devoted to the existence and uniqueness of pathwise solutions to stochastic evolution equations, driven by a Hölder continuous function with Hölder exponent in $(1/2,1)$, and with nontrivial multiplicative noise. As a particular situation, we shall consider the case where the equation is driven by a fractional Brownian motion $B^H$ with Hurst parameter $H>1/2$. In contrast to the article by Maslowski and Nualart [17], we present here an existence and uniqueness result in the space of Hölder continuous functions with values in a Hilbert space $V$. If the initial condition is in the latter space this forces us to consider solutions in a different space, which is a generalization of the Hölder continuous functions. That space of functions is appropriate to introduce a non-autonomous dynamical system generated by the corresponding solution to the equation. In fact, when choosing $B^H$ as the driving process, we shall prove that the dynamical system will turn out to be a random dynamical system, defined over the ergodic metric dynamical system generated by the infinite dimensional fractional Brownian motion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call