Abstract
Visual and auditory projections to the cat caudate nucleus were investigated using the horseradish peroxidase retrograde axonal transport technique in conjunction with that of experimental degeneration of retinal axons. It was found that visual information may reach the caudate nucleus not just through well-known polysynaptic pathways from the cerebral cortex but also following oligosynaptic (transpulvinar, lateroposterior nucleus, suprageniculate nucleus, and nucleus limitans of the thalamus) as well as bisynaptic pathways (via the medial and lateral terminal nuclei of the accessory optical tract, pulvinar, pretectum, intermediary layer of the superior colliculus, and the supraoptic nucleus); some of these pathways were identified for the first time. Direct retinal inputs were found in the suprageniculate nucleus. Additional structures were discovered through which auditory information may reach the caudate nucleus, i.e., the dorsal nucleus of the parvocellular portion of the lateral geniculate body, the deep-lying superior colliculus, and the dorsal and ventral nuclei of the lateral lemniscus. The physiological significance of the pathways described for possible transmission of visual and auditory impulses is discussed and a new principle underlining the organization of sensory inputs into the caudate nucleus is put forward.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have