Abstract

We have investigated a number of key resist factors using EUV lithography including activation energy of deprotection, and acid diffusion length. Our standard high activation resist material, MET-2D (XP5271F), is capable of robust performance at CDs in 40 nm regime and thicknesses above 100 nm. Below 100 nm film thickness, controlling acid diffusion becomes a difficult challenge. We have also developed a low activation resist (XP6305G) which shows superior process window and exposure latitude at CDs in the 35 nm regime. This resist is optimal for 80 nm film thickness. Lastly, we have demonstrated 25 nm 1:1 resolution capability using a novel chemical amplification resist called XP6627. This is the first EUV resist capable of 25 nm resolution. The LER is also very low, 2.7 nm 3σ, for the 25 nm features. Our first version, XP6627G, has a photospeed of 40 mJ/cm2. Our second version, XP6627Q, has a photospeed of 27 mJ/cm2. Our current focus is on improving the photospeed to less than 20 mJ/cm2. The outstanding resolution and LER of this new resist system raises the possibility of extending chemically amplified resist to the 22 nm node.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.