Abstract

Saccharomyces cerevisiae has been extensively engineered for optimising its performance as a microbial cell factory to produce valuable aromatic compounds and their derivatives as bulk and fine chemicals. The production of heterologous aromatic molecules in yeast is achieved via engineering of the aromatic amino acid biosynthetic pathway. This pathway is connected to two pathways of the central carbon metabolism, and is highly regulated at the gene and protein level. These characteristics impose several challenges for tailoring it, and various modifications need to be applied in order to redirect the carbon flux towards the production of the desired compounds. This minireview addresses the metabolic engineering approaches targeting the central carbon metabolism, the shikimate pathway and the tyrosine and phenylalanine biosynthetic pathway of S. cerevisiae for biosynthesis of aromatic chemicals and their derivatives from glucose.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call