Abstract

In this study, the metabolic pathway of phenethylamine synthesis was reconstructed by chromosomal integration and overexpression of the Enterococcus faecium pdc gene encoding phenylalanine decarboxylase in Escherichia coli. The genes encoding 3-deoxy-d-arabinoheptulosonate-7-phosphate synthase (aroG), shikimate kinase II (aroL), chorismate mutase/prephenate dehydratase (pheA), and tyrosine aminotransferase (tyrB) in the phenethylamine synthetic pathway were sequentially chromosomally overexpressed. The phosphotransferase system was replaced by deleting the ptsH-ptsI-crr genes and chromosomally overexpressing the genes encoding galactose permease (galP) and glucokinase (glk). In addition, the zwf gene encoding glucose-6-phosphate dehydrogenase in the pentose phosphate pathway was chromosomally overexpressed, generating the final engineered E. coli strain AUD9. The AUD9 strain produced 2.65 g L-1 phenethylamine with a yield of 0.27 g of phenethylamine g-1 glucose in batch fermentation; fed-batch fermentation of AUD9 produced 38.82 g L-1 phenethylamine with a productivity of 1.08 g L-1 h-1 phenethylamine, demonstrating its potential for industrial fermentative production of phenethylamine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.