Abstract

Long-range DNA charge transfer dynamics of 5′-GAnGAmG3-3′ (n = 1, 2, m = 1−3) sequences have been explored on a quantitative basis. First, the degree of coherence was determined in terms of coherence length. Second, relative contribution of charge transfer mechanisms such as incoherent (nearest-neighbor) hopping, through-bridge, and superexchange as well as G-hopping mechanism was assessed by the density matrix decomposition based on the path integral formalism. Finally, time evolution of individual trajectory contribution was investigated through pathway analysis. Although G-hopping pathways were indeed found to be crucial, we have also shown that the initial transfer is driven by the nearest-neighbor hopping pathways through energetically less favored adenines followed by G-hopping pathways. Therefore, not only the G-hopping pathways but also the through-adenine pathways govern the overall long-range DNA charge transfer. By placing guanines no farther than two adenines apart, one can fully utilize effic...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.