Abstract

Infection with gastrointestinal nematodes, particularly Ostertagia species in domestic ruminants, continues to represent an important cause of impaired productivity in temperate parts of the world. The mechanisms responsible for such losses include changes in feed intake, gastrointestinal function, protein, energy and mineral metabolism, and body composition, and were described in detail at the last Ostertagia Workshop (Fox, M.T. 1993. Pathophysiology of infection with Ostertagia ostertagi in cattle. Vet. Parasitol. 46, 143–158). Since then, research into the pathophysiology of infection has focused on three main areas: mechanisms of appetite depression; changes in gastrointestinal function; and alterations in protein metabolism. Studies on the mechanisms responsible for appetite depression in Ostertagia-infected cattle have continued to support a close association between impaired feed intake and elevated blood gastrin concentrations. Alternative explanations will have to be sought, however, to account for the drop in feed intake associated with intestinal parasitism in which blood gastrin levels normally remain unaltered. Such work in sheep, and more recently in laboratory animals, has shown that central satiety signals are associated with inappetance accompanying intestinal infections, rather than changes in peripheral peptide levels. Changes in gastrointestinal function have also attracted attention, particularly the mechanisms responsible for increases in certain gut secretions, notably pepsinogen and gastrin. Elegant experimental studies have established that the gradient in pepsinogen concentration between abomasal mucosa and local capillaries could alone account for the increase in blood concentrations seen in Type 1 ostertagiosis. Additional factors, such as increases in capillary permeability and in surface area, probably contribute to such responses in cases of Type 2 disease. The increase in blood gastrin concentrations that accompanies Ostertagia infections in cattle is associated with the concurrent rise in abomasal pH. However, in sheep, additional factors appear to contribute to the hypergastrinaemia which may occur independent of parasite-induced changes in gastric pH. Alterations in protein metabolism have been well documented in ruminants harbouring monospecific infections with either abomasal or intestinal nematodes. More recently, however, the effects of dual abomasal and intestinal infections have been investigated and demonstrated that the host is able to compensate for impaired abomasal digestion provided that the intestinal parasite burden does not occupy the main site of digestion and absorption in the latter organ. An alternative method of improving the host's protein balance, dietary supplementation, has been shown not only to improve productivity, but also to enhance the innate resistance of susceptible breeds of sheep to Haemonchus and to accelerate the development of immunity to Ostertagia in lambs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call