Abstract

H9N2 is currently the main subtype of avian influenza in China. In order to use reverse genetics to rapid preparation of seed strains for vaccine production, and intend to prevent and control the H9N2 subtype epidemic strains of avian influenza virus (AIV). In this study, we successfully rescued 2 H9N2 recombinant viruses based on the representative viruses of Southeast China and confirmed by RT-PCR and sequencing. Genetic stability, pathogenicity, transmissibility, and antigenicity of 2 recombinant viruses were evaluated. Compared to the FZ1, the growth kinetics of H9N2(HA+NA)/PR8 showed no significant difference, H9N2(HA+NA+M+PB1)/PR8 was slightly lower. Our study also confirmed 2 recombinant viruses had good genetic stability after 10 passages but possessed lower pathogenicity than FZ1. Although both recombinant viruses led to seroconversion in all inoculated birds on 14 dpi, they complete loss of viral transmission of the virus to contact birds. In addition, birds were immunized via hypodermic route by inactivated vaccines of H9N2(HA+NA)/PR8, H9N2(HA+NA+M+PB1)/PR8 and wild-type virus with a single dose, and the results showed that the hemagglutination inhibition titers on 21 dpv were 10.5, 9.6, and 10.5 log2, respectively. And recombinant viruses both provided a certain protection against wild-type virus challenge. In conclusion, these data indicated that 2 recombinant viruses will be expected to be used as inactivated vaccines to controlling the spread of H9N2 subtype AIV even have potential application for attenuated viral vaccines, which provides a reference for the prevention and control of influenza virus pandemics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call