Abstract
ObjectiveTo define molecular features of ovarian cancer (OC) with germline pathogenic variants (PVs) in non-BRCA homologous recombination (HR) genes and analyze survival compared to BRCA1/2 and wildtype (WT) OC. MethodsWe included patients with OC undergoing tumor-normal sequencing (MSK-IMPACT) from 07/01/2015–12/31/2020, including germline assessment of BRCA1/2 and other HR genes ATM, BARD1, BRIP1, FANCA, FANCC, NBN, PALB2, RAD50, RAD51B, RAD51C, and RAD51D. Biallelic inactivation was assessed within tumors. Progression-free (PFS) and overall survival (OS) were calculated from pathologic diagnosis using the Kaplan-Meier method with left truncation. Whole-exome sequencing (WES) was performed in a subset. ResultsOf 882 patients with OC, 56 (6.3%) had germline PVs in non-BRCA HR genes; 95 (11%) had BRCA1-associated OC (58 germline, 37 somatic); and 59 (6.7%) had BRCA2-associated OC (40 germline, 19 somatic). High rates of biallelic alterations were observed among germline PVs in BRIP1 (11/13), PALB2 (3/4), RAD51B (3/4), RAD51C (3/4), and RAD51D (8/10). In cases with WES (27/35), there was higher tumor mutational burden (TMB; median 2.5 [1.1–6.0] vs. 1.2 mut/Mb [0.6–2.6]) and enrichment of HR-deficient (HRD) mutational signatures in tumors associated with germline PALB2 and RAD51B/C/D compared with BRIP1 PVs (p < 0.01). Other features of HRD, including telomeric-allelic imbalance (TAI) and large-scale state transitions (LSTs), were similar. Although there was heterogeneity in PFS/OS by gene group, only BRCA1/2-associated OC had improved survival compared to WT OC (p < 0.01). ConclusionsOCs associated with germline PVs in non-BRCA HR genes represent a heterogenous group, with PALB2 and RAD51B/C/D associated with an HRD phenotype.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have