Abstract

A transgenic primate model for Huntington's Disease (HD) first reported by our group that (HD monkeys) carry the mutant Huntingtin (HTT) gene with expanded polyglutamine (CAG) repeats and, develop chorea, dystonia, and other involuntary motor deficiencies similar to HD [ 1 ]. More recently, we have found that longitudinal magnetic resonance imaging of the HD monkey brain revealed significant atrophy in regions associated with cognitive deficits symptomatic in HD patients, providing the first animal model which replicates clinical phenotypes of diagnosed humans. Here we report germline transmission of the pathogenic mutant HTT in HD monkey by the production of embryos and subsequent derivation of HD monkey embryonic stem cells (rHD-ESCs) using HD monkey sperm. rHD-ESCs inherit mutant HTT and green fluorescent protein (GFP) genes through the gametes of HD monkey. rHD-ESCs express mutant HTT and form intranuclear inclusion, a classical cellular feature of HD. Notably, mosaicism of the pathogenic polyQ region in the sperm as well as derived ESCs were also observed, consistent with intraindividual and intergenerational reports of mosaic CAG repeats [ 2 , 3 ]and CAG expansion in HD patients [ 4-7 ]. The confirmation of transgene inheritability and development of pathogenic HD phenotype in derived rHD-ESCs reported in this study is a milestone in the pursuit of a transgenic primate model with inherited mutant HTT for development of novel disease biomarkers and therapeutics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.