Abstract

Within the framework of the Feynman path integral theory, we provide a unified insight into ground-state properties of the Fröhlich polaron in low-dimensionally confined media. The model that we adopt consists of an electron immersed in the field of bulk LO phonons and bounded within an anisotropic parabolic potential box, whose barrier slopes can be tuned so as to yield an explicit tracking of the Fröhlich interaction encompassing the bulk and all low-dimensional geometric configurations of general interest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.