Abstract

The dynamics of towed objects in a fluid environment is of interest for many practical situations. In this paper we report results for wake instabilities of spheres towed in a water tank. Six particles of different diameter and/or density ratio have been investigated, towed at 5 different constant velocities. The explored density ratios lay within Γ∈[1.06;2.56], with particle Reynolds numbers Rep∈[100;1200], corresponding to Galileo numbers in the range Ga∈[1300;8000]. We introduce a surrogate Galileo number Ga⁎ that, by taking into account the towing force applied to the particle, allows a comparison with the case of free falling/ascending spheres. Using innovative 3D tracking techniques, the three-dimensional trajectory of each particle is reconstructed. The wake instability for the studied particles is found to be associated to a 3D helicoidal motion with an elliptical cross section in the plane perpendicular to the towing direction. The 3D oscillatory motion was found independent of the particle density ratio, with a threshold of the order of Repc~355 (or Ga⁎c~245). This threshold is slightly larger than the one found for the free falling particles’ transition to 3D chaotic motions (Repc~310 or Gac~225).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.